Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2742, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173332

RESUMO

Spin chains proximitized by s-wave superconductors are predicted to enter a mini-gapped phase with topologically protected Majorana modes (MMs) localized at their ends. However, the presence of non-topological end states mimicking MM properties can hinder their unambiguous observation. Here, we report on a direct method to exclude the non-local nature of end states via scanning tunneling spectroscopy by introducing a locally perturbing defect on one of the chain's ends. We apply this method to particular end states observed in antiferromagnetic spin chains within a large minigap, thereby proving their topologically trivial character. A minimal model shows that, while wide trivial minigaps hosting end states are easily achieved in antiferromagnetic spin chains, unrealistically large spin-orbit coupling is required to drive the system into a topologically gapped phase with MMs. The methodology of perturbing candidate topological edge modes in future experiments is a powerful tool to probe their stability against local disorder.

2.
Nano Lett ; 23(4): 1622-1628, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36603183

RESUMO

The exchange interaction of a brominated Co-porphyrin molecule with the Cooper pair condensate of Pb(111) is modified by reducing the Co-surface separation. The stepwise dehalogenation and dephenylation change the Co adsorption height by a few picometers. Only the residual Co-porphine core exhibits a Yu-Shiba-Rusinov bound state with low binding energy in the Bardeen-Cooper-Schrieffer energy gap. Accompanying density functional calculations reveal that the Co dz2 orbital carries the molecular magnetic moment and is responsible for the intragap state. The calculated spatial evolution of the Yu-Shiba-Rusinov wave function is compatible with the experimentally observed oscillatory attenuation of the electron-hole asymmetry with increasing lateral distance from the magnetic porphine center.

3.
Nat Commun ; 13(1): 6917, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376290

RESUMO

The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- (1D) or two-dimensional (2D) isotropic magnets with short-ranged interactions. Here we show that in finite-size 2D van der Waals magnets typically found in lab setups (within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy. We demonstrate that magnetic ordering can be created in 2D flakes independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~ 1026 m) to observe the vanishing of the magnetic order as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main ingredient for 2D magnetism.

4.
Nat Nanotechnol ; 17(4): 384-389, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35256768

RESUMO

Isolated Majorana modes (MMs) are highly non-local quantum states with non-Abelian exchange statistics, which localize at the two ends of finite-size 1D topological superconductors of sufficient length. Experimental evidence for MMs is so far based on the detection of several key signatures: for example, a conductance peak pinned to the Fermi energy or an oscillatory peak splitting in short 1D systems when the MMs overlap. However, most of these key signatures were probed only on one of the ends of the 1D system, and firm evidence for an MM requires the simultaneous detection of all the key signatures on both ends. Here we construct short atomic spin chains on a superconductor-also known as Shiba chains-up to a chain length of 45 atoms using tip-assisted atom manipulation in scanning tunnelling microscopy experiments. We observe zero-energy conductance peaks localized at both ends of the chain that simultaneously split off from the Fermi energy in an oscillatory fashion after altering the chain length. By fitting the parameters of a low-energy model to the data, we find that the peaks are consistent with precursors of MMs that evolve into isolated MMs protected by an estimated topological gap of 50 µeV in chains of at least 35 nm length, corresponding to 70 atoms.

5.
Phys Rev Lett ; 127(4): 047203, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355941

RESUMO

Magnetic textures are often treated as quasiparticles following Thiele's equation of motion. We demonstrate via spin model simulations of the current-driven and Brownian motion of ferromagnetic skyrmions that the existing theory based on Thiele's equation is insufficient to describe the dynamics of skyrmions at finite temperatures. We propose an extended equation of motion that goes beyond Thiele's equation by taking into account the coupling of the skyrmion to the magnonic heat bath leading to an additional dissipative term that is linear in temperature. Our results indicate that this so-far-neglected magnon-induced friction dominates for finite temperatures and Gilbert damping values typical for thin films and multilayers.

6.
Nanomaterials (Basel) ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34443761

RESUMO

We present results for the electronic and magnetic structure of Mn and Fe clusters on Nb(110) surface, focusing on building blocks of atomic chains as possible realizations of topological superconductivity. The magnetic ground states of the atomic dimers and most of the monatomic chains are determined by the nearest-neighbor isotropic interaction. To gain physical insight, the dependence on the crystallographic direction as well as on the atomic coordination number is analyzed via an orbital decomposition of this isotropic interaction based on the spin-cluster expansion and the difference in the local density of states between ferromagnetic and antiferromagnetic configurations. A spin-spiral ground state is obtained for Fe chains along the [11¯0] direction as a consequence of the frustration of the isotropic interactions. Here, a flat spin-spiral dispersion relation is identified, which can stabilize spin spirals with various wave vectors together with the magnetic anisotropy. This may lead to the observation of spin spirals of different wave vectors and chiralities in longer chains instead of a unique ground state.

7.
Nat Commun ; 12(1): 2040, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795672

RESUMO

Magnetic atoms coupled to the Cooper pairs of a superconductor induce Yu-Shiba-Rusinov states (in short Shiba states). In the presence of sufficiently strong spin-orbit coupling, the bands formed by hybridization of the Shiba states in ensembles of such atoms can support low-dimensional topological superconductivity with Majorana bound states localized on the ensembles' edges. Yet, the role of spin-orbit coupling for the hybridization of Shiba states in dimers of magnetic atoms, the building blocks for such systems, is largely unexplored. Here, we reveal the evolution of hybridized multi-orbital Shiba states from a single Mn adatom to artificially constructed ferromagnetically and antiferromagnetically coupled Mn dimers placed on a Nb(110) surface. Upon dimer formation, the atomic Shiba orbitals split for both types of magnetic alignment. Our theoretical calculations attribute the unexpected splitting in antiferromagnetic dimers to spin-orbit coupling and broken inversion symmetry at the surface. Our observations point out the relevance of previously unconsidered factors on the formation of Shiba bands and their topological classification.

8.
J Phys Condens Matter ; 33(5)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33091880

RESUMO

Equilibrium properties and localized magnon excitations are investigated in topologically distinct skyrmionic textures. The observed shape of the structures and their orientation on the lattice is explained based on their vorticities and the symmetry of the crystal. The transformation between different textures and their annihilation as a function of magnetic field is understood based on the energy differences between them. The angular momentum spin-wave eigenmodes characteristic of cylindrically symmetric structures are combined in the distorted spin configurations, leading to avoided crossings in the magnon spectrum. The susceptibility of the skyrmionic textures to homogeneous external fields is calculated, revealing that a high number of modes become detectable due to the hybridization between the angular momentum eigenmodes. These findings should contribute to the observation of spin waves in distorted skyrmionic structures via experiments and numerical simulations, widening the range of their possible applications in magnonic devices.

9.
Nat Commun ; 11(1): 4573, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917904

RESUMO

Quantum mechanical systems with long-range interactions between quasiparticles provide a promising platform for coherent quantum information technology. Superconductors are a natural choice for solid-state based quantum devices, while magnetic impurities inside superconductors give rise to quasiparticle excitations of broken Cooper pairs that provide characteristic information about the host superconductor. Here, we reveal that magnetic impurities embedded below a superconducting La(0001) surface interact via quasiparticles extending to very large distances, up to several tens of nanometers. Using low-temperature scanning probe techniques, we observe the corresponding anisotropic and giant oscillations in the LDOS. Theoretical calculations indicate that the quasi-two-dimensional surface states with their strongly anisotropic Fermi surface play a crucial role for the focusing and long-range extension of the magnetic bound states. The quasiparticle focusing mechanism should facilitate the design of versatile magnetic structures with tunable and directed magnetic interactions over large distances, thereby paving the way toward the design of low-dimensional magnet-superconductor hybrid systems exhibiting topologically non-trivial quantum states as possible elements of quantum computation schemes based on Majorana quasiparticles.

10.
Nat Nanotechnol ; 14(7): 658-661, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011220

RESUMO

Magnetic skyrmions in thin films can be efficiently displaced with high speed by using spin-transfer torques1,2 and spin-orbit torques3-5 at low current densities. Although this favourable combination of properties has raised expectations for using skyrmions in devices6,7, only a few publications have studied the thermal effects on the skyrmion dynamics8-10. However, thermally induced skyrmion dynamics can be used for applications11 such as unconventional computing approaches12, as they have been predicted to be useful for probabilistic computing devices13. In our work, we uncover thermal diffusive skyrmion dynamics by a combined experimental and numerical study. We probed the dynamics of magnetic skyrmions in a specially tailored low-pinning multilayer material. The observed thermally excited skyrmion motion dominates the dynamics. Analysing the diffusion as a function of temperature, we found an exponential dependence, which we confirmed by means of numerical simulations. The diffusion of skyrmions was further used in a signal reshuffling device as part of a skyrmion-based probabilistic computing architecture. Owing to its inherent two-dimensional texture, the observation of a diffusive motion of skyrmions in thin-film systems may also yield insights in soft-matter-like characteristics (for example, studies of fluctuation theorems, thermally induced roughening and so on), which thus makes it highly desirable to realize and study thermal effects in experimentally accessible skyrmion systems.

11.
Sci Adv ; 4(5): eaar5251, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29756034

RESUMO

Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing.

12.
Nat Commun ; 9(1): 1571, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679007

RESUMO

Magnetic skyrmions are localized nanometer-sized spin configurations with particle-like properties, which are envisioned to be used as bits in next-generation information technology. An essential step toward future skyrmion-based applications is to engineer key magnetic parameters for developing and stabilizing individual magnetic skyrmions. Here we demonstrate the tuning of the non-collinear magnetic state of an Fe double layer on an Ir(111) substrate by loading the sample with atomic hydrogen. By using spin-polarized scanning tunneling microscopy, we discover that the hydrogenated system supports the formation of skyrmions in external magnetic fields, while the pristine Fe double layer does not. Based on ab initio calculations, we attribute this effect to the tuning of the Heisenberg exchange and the Dzyaloshinsky-Moriya interactions due to hydrogenation. In addition to interface engineering, hydrogenation of thin magnetic films offers a unique pathway to design and optimize the skyrmionic states in low-dimensional magnetic materials.

13.
Phys Rev Lett ; 119(3): 037202, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777635

RESUMO

Spin-polarized scanning tunneling microscopy investigations reveal a significant increase of the magnetic period of spin spirals in three-atomic-layer-thick Fe films on Ir(111), from about 4 nm at 8 K to about 65 nm at room temperature. We attribute this considerable influence of temperature on the magnetic length scale of noncollinear spin states to different exchange interaction coefficients in the different Fe layers. We thus propose a classical spin model that reproduces the experimental observations and in which the crucial feature is the presence of magnetically coupled atomic layers with different interaction strengths. This model might also apply for many other systems, especially magnetic multilayers.

14.
Phys Rev Lett ; 117(15): 157205, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768339

RESUMO

We determined the parameters of a classical spin Hamiltonian describing an Fe monolayer on Pd(111) surface with a Pt_{1-x}Ir_{x} alloy overlayer from ab initio calculations. While the ground state of the system is ferromagnetic for x=0.00, it becomes a spin spiral state as Ir is intermixed into the overlayer. Although the Dzyaloshinsky-Moriya interaction is present in the system, we will demonstrate that the frustrated isotropic exchange interactions play a prominent role in creating the spin spiral state, and these frustrated couplings lead to an attractive interaction between Skyrmions at short distances. Using spin dynamics simulations, we show that under these conditions the individual Skyrmions form clusters, and that these clusters remain stable at finite temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...